

UNITA' TERMOVENTILANTI MHT UNITA' DI CONDIZIONAMENTO MHC

Indice

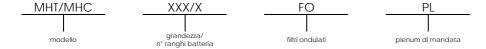
Generalità	pag.	2
Orientamenti	pag.	3
Filtri:quantità e dimensioni	pag.	3
Caratteristiche tecniche	pag.	4
Batterie	pag.	4
Caratteristiche delle batterie ad acqua refrigerata	pag.	4
Fattori di conversione	pag.	5
Ventilatori e motori	pag.	6
Tabella portate	pag.	7
Resa dei ventilatori	pag.	7
Dimensioni di ingombro: MH 28 – 36 – 44 – 58	pag.	8
Dimensioni di ingombro: MH 69 – 90	pag.	9
Dimensioni di ingombro: MH 112 – 140	pag.	10
Dimensioni di ingombro: MH 176 - 224	pag.	11

GENERALITÀ

Queste unità di trattamento aria sono fornite nella versione solo riscaldamento **MHT** (con batterie a 1 - 2 - 3 - 4 ranghi) e nella versione condizionamento **MHC** (con baterie 4 - 6 - 8 ranghi). Le dieci grandezze proposte per ogni versione garantiscono una porata d'aria nominale che va da 2500 m³/h a 20000 m³/h. Le unità sono complete di:

- filtri sintetici ondulati efficienza 88% Ashrae, 52-76 ponderale (G3 EU3);
- una o due batterie di raffreddamento e riscaldamento ad acqua;
- sezione ventilante.

Tutte le unità possono essere installate a pavimento, con sviluppo verticale, oppure possono essere installate orizzontalmente, pensili a soffitto.

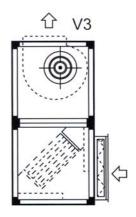

Caratteristiche tecnico-costruttive

- Mobile di copertura con pannelli in lamiera zincata Z275 prerivestita beige (RAL7032)??????? e telaio in estruso di alluminio.
- Costruzione modulare tale da consentire facilmente l'installazione secondo diversi orientamneti.
- Pannelli asportabili per un facile accesso ai componenti per 'installazione o la manutenzione.
- Rivestimento interno termoacustico.
- Ventilatori centrifughi direttamente accoppiati o con trasmissione a cinghie.
- Batterie di scambio termico costituite da tubi di rame ed alette in alluminio.

Accessori a richiesta

- Plenum di mandata con griglie a doppio filare di alette orientabili.
- Kit per applicazione pensile.
- Sistema di umidificazione a vapore.

Sigla di identificazione:

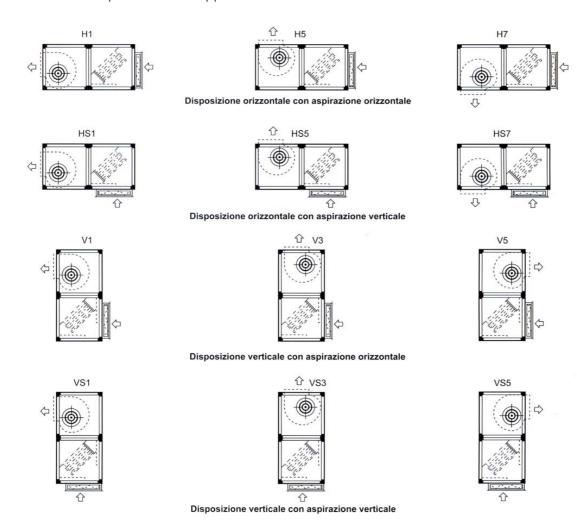


Esempio: MHT 112/3 - FO - PL

Unità di termoventilante serie MHT grandezza 112 con batteria a 3 ranghi, dotata di filtri ondulati e plenum di mandata.

Nota:

- i filtri sono sempre forniti. (tabella 1)
- Per i tipi di batterie previsti, vedi la tabella 2.
- Il plenum di mandata è opzionale.
- Al momento dell'ordine è necessario specificare l'Orientamento desiderato basandosi sulle proposte rappresentate a pagina _____; qualora non dovesse risultare nessuna specifica verrà fornita la versione V3.



ORIENTAMENTI

Le unità di condizionamento MH sono concepite in modo tale da permettere la composizione delle sezioni filtro, batterie e ventilatore (nonché plenum) nel modo più consono al disegno dell'impianto. Le sezioni ventilatore, batteria e plenum sono quadrate se viste dal lato ispezioni; ciò permette di ruotarle l'una rispetto all'altra semplicemente spostando un pannello in modo da ottenere la parete aperta di passaggio aria dove richiesto.

Analogamente, è possibile variare l'orientamento del ventilatore e la posizione del filtro e del plenum. Le configurazioni ottenibili sono schematicamente rappresentate di seguito.

L'orientamento del lato attacchi della batteria è invertibile ruotando la stessa e spostando i manicotti di entrata e uscita acqua all'estremo opposto dei collettori.

FILTRI: QUANTITÀ E DIMENSIONI

Tabella 1

Quantità	Dimensioni mm
1	400 x 625
2	400 x 500
2	400 x 625
2	500 x 400
1	500 x 500
3	500 x 500
4	500 x 500
4	400 x 500
2	400 x 625
8	400 x 500
6	400 x 625
2	400 x 500
8	400 x 625
2	400 x 500
	1 2 2 2 2 1 3 4 4 4 2 8 6 2 8

I filtri sono del tipo sintetico ondulato di efficienza Eurovent 4/5 EU3 (88% gravimetrico ASHRAE 52-76)

CARATTERISTICHE TECNICHE

Tabella 2

	Descrizione		2	8	3	6	4	4	5	8	6	9	9	0	11	12	14	10	17	76	22	24
	Portata aria m³/h (*)		25	00	32	00	40	00	50	00	63	00	80	00	100	000	128	300	160	000	200	000
	_		Q	Dp	Q	Dp	Q	Dp	Q	Dp												
			kW	kPa	kW	kPa	kW	kPa	kW	kPa												
~	Resa frigorifera	4R	13.5	40	15.8	12	20	18	26	18	33	35	39	10	53.7	37	62.7	37	82	17	107	34
MHC.	Aria entrante 27°C-50% U.R.	6R	16.5	1.6	21.7	2.6	25.4	14	34	14	43	26	51	10	70	29	80	29	110	14	96	27
.,	Acqua 7° - 12° C	8R	20	31	25.6	46	30	11	38.5	11	49	22	63	39	80	25	93	25	122	12	158	23
		1R	8.4	6	11.5	17	14.5	26	18.1	26	22	7	28.5	13	36.3	7	44.6	7	57	2.1	72.7	43.3
MH.	Riscaldamento	2R	22.4	10.5	29.5	23	38.5	36	3.1	36	58.8	10	73.8	19.5	90.7	9.7	114.8	9.7	146	34.5	183.7	52
=	Acqua 85°-75° C	3R	31	28.3	39.8	19	48.8	5	64.3	5	77	8	100	16	123	8.4	155	8.4	198	28.5	248	49
	,	4R	36.6	7.5	48	17	60	29	75.5	29	94.5	48	119	15	147	7.1	187	7.1	240	23.7	302	46
		1R	4.3	7.8	5.6	16	6.9	25.5	8.8	25.5	10.5	6	13.9	13	17	6.5	22	6.5	29.2	24.3	36	46
MH	Riscaldamento	2R	11.1	13	14.4	22	16.1	42	22.9	42	27.9	10	36.2	20	44.5	10	56	10	72	36.5	90	54
≐	Acqua 50°-45° C	3R	15.4	33.8	19.5	3.3	24.6	35	31.2	35	38	9	49.3	17.5	60	8.5	77.5	8.5	98	30.3	123	52
	,	4R	18.2	8.7	23.7	17	29.6	30	37.2	30	45.8	7.3	59	14	73	7.5	93	7.5	118	26.5	148	42
N	Nr. tubi frontali		1	6	1	6	1	6	1	6	2	0	2	0	3	2	3	2	3	2	3	2
D	imensioni		400	x700	400	(900	400x	1100	500x	1150	500x	1400	500x	1800	800x	1400	800x	1750	800x	2200	800x	2800
Sı	up. Front. Batteria (m	²)	0	28	0.3	36	0.4	44	0.!	58	0.0	69	0.0	90	1.	12	1.	.4	1.	76	2.2	24

(*)Velocità fontale sulle batterie 2.5 m/s

Q - resa in kW

Dp - perdita di carico lato acqua in kPa

BATTERIE

Le batterie di scambio termico sono del tipo ad aletta continua. La geometria standard è P25.

Geometrie: P25 maglia quadrata: passo tubi 25mm, passo ranghi 25mm.

Passo alette: standard 2.5mm; a richiesta 1.6 - 2.0 - 3.0 - 4.0.

Materiali standard: aletta in alluminio a norme DIN 1725/1784/1788 spessore 0.15mm

tubo in rame a norme DIN 1754/1787/1785/17671 99.90 Cu spessore 0.41mm

Grandezze 28, 36, 44, 58, 69, 90

Batterie standard: una batteria a 2 ranghi (termoventilazione) o 4 ranghi (condizionamento).

Batterie opzionali: batteria 6 ranghi, 8 ranghi, 4+2 ranghi (usabile anche come 6 ranghi collegando tra loro l'uscita della 4 ranghi con l'entrata della 2 ranghi per le grandezze 28-36-44-58); batteria

ad espansione diretta.

Grandezze 112, 140, 176, 224.

Batterie standard: batteria di raffreddamento a 4 ranghi, batteria di riscaldamento a 2 ranghi.

Batterie opzionali: batteria di raffreddamento a 6 ranghi, batteria di raffreddamento a 8 ranghi; batteria ad espansione diretta.

CARATTERISTICHE DELLE BATTERIE AD ACQUA REFRIGERATA

Nella tabella 3 diamo la resa delle batterie, riferita ad un m^2 di superficie frontale, per 4,6,8 ranghi, alimentazione con acqua $85.6^\circ/11.8^\circ$ ($42^\circ-52^\circ\text{F}$) a $7.2^\circ/12.8^\circ\text{C}$ ($45^\circ-55^\circ$ T) e varie condizioni di aria entrante espresse dalla temperatura a B.U. (TB.U. ϵ).

Le rese sono calcolate per velocità dell'acqua all'interno dei tubi di 0.9 m/s.

Per diverse condizioni dell'acqua e diversa velocità le rese si modificano applicando i fattori di correzione riportati in tab. 4 e tab. 5.

La velocità dell'acqua all'interno dei tubi si calcola con la formula:

Q (kW)= potenzialità di raffreddamento (calore totale) per m² di superficie frontale.

TB.U._U (°C)= temperatura a B.U. dell'aria in uscita. Le rese riferite al singolo modello si ottengono moltiplicando le rese trovate per la superficie frontale riportata in tab. 1.

Tabella 3

Tabell	u 3		Jugad !!	_	F / ^ ~	- ,.		_	11.000	_		_	7.600		!! !!	_	10.000
		En	itrata H	20	5.6°C (42°F)	U	scita H ₂	O	11.2°C (52°F)	En	ntrata H	₂ O	7.2°C (45°F)	U	scita H	20	12.8°C (55°F)
				Voloci	tà front	alo ne	o (EDAA)		(32 F)			Voles	· ·	talo re	/c /EDA4	`	(33 F)
TB.U. _€	N.	2	25		10 110111 .50		s (FPM) 75		.00	Velocità frontale m/s (FPM) 2.25 2.50 2.75						-	.00
IN	Ranghi		50)		00)		50)		00)		50)		00)		50)		00)
°C(°F)		Q	TB.U. _U	Q	TB.U.u	Q	TB.U.u	Q	TB.U.u	Q	TB.U. _U	Q	TB.U.u	Q	TB.U. _U	Q	TB.U.u
18.3	4	45.5	12.6	48.3	12.8	50.8	13.1	53.6	13.3	40.1	13.3	42.3	13.6	37.8	13.7	50.5	13.9
(65)	6	59.9	10.5	64.1	10.7	67.8	11.1	72.0	11.4	52.1	11.6	56.2	11.9	59.9	11.9	63.7	12.2
	8	72.6	8.4	77.9	8.8	82.3	9.2	87.7	9.4	63.1	9.8	68.1	10.1	73.1	10.3	77.3	10.7
18.9	4	48.3	12.9	51.0	13.2	53.6	13.4	56.5	13.6	42.6	13.6	45.5	13.8	47.9	14.0	50.5	14.2
(66)	6	63.4	10.7	67.8	10.9	71.6	11.3	76.0	11.6	55.5	11.8	59.7	12.0	63.7	12.2	61.7	12.4
	8	76.6	8.6	82.3	8.9	87.3	9.4	92.8	9.7	66.9	9.9	72.6	10.3	77.6	10.4	82.7	10.8
19.4	4	51.0	13.1	54.3	13.5	56.7	13.7	59.9	14.0	45.5	13.9	48.3	14.2	51.0	14.3	53.6	14.6
(67)	6	66.9	10.8	72.0	11.2	76.0	11.5	80.5	11.8	59.0	11.9	63.7	12.3	67.8	13.5	72.0	12.7
, ,	8	80.7	8.6	87.1	9.1	92.4	9.5	98.1	9.8	70.9	10.1	77.0	10.4	82.3	10.7	87.7	10.9
20.0	4	54.0	13.4	57.1	13.8	59.9	14.1	63.1	14.3	48.3	14.2	51.0	14.6	54.0	14.7	56.7	14.9
(68)	6	70.7	11.0	75.7	11.4	80.1	11.7	84.9	12.1	62.4	12.2	67.6	12.5	72.0	12.7	76.0	13.0
	8	84.9	8.7	91.5	9.2	97.4	9.7	103.5	9.9	75.3	10.3	81.4	10.6	87.3	10.8	93.0	11.2
20.6	4	56.7	13.7	59.9	14.2	63.4	14.4	66.3	14.7	51.0	14.6	54.3	14.8	57.4	15.1	59.9	15.3
(69)	6	74.4	11.2	79.8	11.7	84.5	12.0	89.5	12.4	66.3	12.4	71.3	12.8	76.3	13.0	80.7	13.2
. ,	8	89.5	8.9	96.5	9.3	102.8	9.7	109.2	10.1	79.8	10.4	86.4	10.8	92.4	11.0	98.4	11.4
21.1	4	59.9	14.1	63.4	14.5	66.9	14.7	70.0	15.1	54.3	14.8	57.4	10.2	60.6	15.4	63.7	15.7
(70)	6	78.3	11.4	84.2	11.9	89.3	12.2	101.3	12.6	70.3	12.7	75.7	13.0	80.7	13.2	85.5	13.9
_ ` , _	8	94.0	9.1	101.5	9.4	108.1	9.9	114.8	10.3	84.2	10.7	91.2	10.9	97.8	11.2	104.1	11.6
21.7	4	63.1	14.4	66.9	14.8	70.0	15.2	73.5	15.4	57.4	15.2	60.9	15.5	63.7	15.7	67.2	16.0
(71)	6	82.3	11.7	88.4	12.1	93.7	12.6	99.1	12.9	74.1	13.0	79.5	13.2	84.9	13.5	85.2	13.8
. , _	8	98.7	9.2	106.6	9.6	113.6	10.2	120.5	10.6	89.0	10.8	96.2	11.9	10.8	11.4	109.4	11.8
22.2	4	66.3	14.8	70.0	15.2	73.8	15.5	77.0	15.8	60.2	15.5	63.7	15.9	67.2	16.1	70.7	16.4
(72)	6	86.4	12.0	92.8	12.4	98.4	12.8	103.7	13.2	84.0	13.6	89.5	13.6	89.5	13.7	94.7	14.1
. ,	8	103.5	9.4	111.6	9.8	119.2	10.3	126.2	10.8	93.4	10.9	101.3	11.3	108.5	11.6	115.1	12.1
22.8	4	69.4	15.2	73.1	15.6	77.0	15.9	80.7	16.2	63.4	15.8	66.9	16.2	70.7	16.5	74.1	16.8
(73)	6	90.2	12.2	96.9	12.7	102.8	13.2	108.5	13.5	82.0	13.4	88.0	13.8	93.7	14.1	99.3	14.4
	8	107.9	9.6	116.7	10.1	124.5	10.5	131.9	11.0	97.8	11.9	102.8	11.5	113.6	11.9	120.5	12.3
23.3	4	72.6	15.5	76.6	15.9	80.7	14.3	84.2	16.6	66.5	16.2	70.3	16.5	74.1	16.9	77.6	17.2
(74)	6	94.3	12.5	101.3	13.0	107.6	13.4	113.6	13.8	85.8	13.7	92.4	14.1	98.4	14.4	103.7	14.7
,	8	112.6	9.8	121.7	10.2	130.0	10.7	137.8	11.2	102.6	11.3	111.0	11.8	119.2	12.1	126.2	12.5
23.9	4	75.7	15.8	80.1	16.3	84.2	16.7	88.0	17.1	70.0	16.5	73.8	16.9	77.6	17.3	81.4	17.6
(75)	6	98.7	12.8	105.9	13.2	112.7	13.7	118.6	14.1	89.9	14.0	96.9	14.3	103.1	14.7	109.2	15.0
(, 5)	8	117.3	10.0	127.1	10.4	135.9	10.0	144.2	11.4	107.2	11.5	116.4	11.9	124.5	12.3	132.2	12.7
						,							/	.=			

FATTORI DI CONVERSIONE

Tabella 4

	Δt acqua	
°C (°F)	C.F.	
3.3 (6)	1.08	
4.4 (8)	1.04	
5.6 (10	1.00	
6.7 (12)	0.96	
7.8 (14)	0.92	
•		

Tabella 5

Tabella 5	
	Velocità dell' acqua
m/s	C.F.
0.46	0.90
0.61	0.95
0.90	1.00
1.22	1.05
1.83	1.10

Nelle tabelle 6 e 8 le rese delle batterie di alimentazione con acqua 80°-70°C (176°-158°F) e rispettivamente con acqua 45°*40°C (113°-104°F) ed aria entrante a 15°C.

Le rese sono calcolate per veolcità dell'acqua all'interno dei tubi di 0.9 m/s.

Per diverse temperature di aria ed acqua, si modificano le rese applicando i fattori di correzione riportati nelle tabelle 7 e 9.

Le velocità dell'acqua all'interno dei tubi si calcola con la formula data per le batterie fredde.

Q (kW)= potenzialità di riscaldamento (calore totale) per m² di superficie frontale.

TBS (°C)= temperatura di uscita dell'acqua dalla batteria.

Tabella 6

Veloci	tà front	ale								
m/s (FI	PM)		Numero ranghi							
			1	2	3	4				
2.25	TBS	Q	26.4	67.7	98.7	114.9				
(450)	IDS	°C	24.5	39.5	98.5	55.4				
2.5	TBS	Q	28.2	78.5	99.8	120.9				
(500)	IDS	°C	24.2	38.6	97.4	54.3				
2.75	TDC	Q	29.9	77.1	106.5	129.9				
(550)	TBS	°C	23.9	37.8	46.5	51.4				
3.00	TDC	Q	31.6	84.4	113	138.2				
(600)	TBS	°C	23.6	37.1	45.6	57.6				
3.50	TDC	Q	35.8	90.6	126.6	156				
(700)	TBS	°C	22.9	35.6	43.7	50.4				
4.00	TDC	Q	38.5	99.8	170.2	173				
(800)	TBS	°C	22.6	34.8	42.8	49.4				

Tabella 8

Veloci	Velocità frontale									
m/s (FF	PM)		Numero	rangh	i					
		1	2	3	4					
2.25	Q	12.0	30.6	42.0	50.7					
(450)	°C	19.3	26.0	80.2	33.3					
2.5	Q	12.8	32.7	45.1	54.8					
(500)	°C	19.2	25.6	29.7	32.8					
2.75	Q	13.5	34.7	48.1	58.7					
(550)	°C	19.0	25.3	29.2	32.4					
3.00	Q	14.7	36.7	51.0	62.5					
(600)	°C	18.9	24.9	28.8	31.9					
3.50	Q	15.8	40.7	57.0	70.4					
(700)	°C	18.5	24.2	27.9	31.0					
4.00	Q	17.3	44.8	63.0	78.2					
(800)	°C	18.3	23.9	27.5	30.5					

Tabella 7

		Acq	ua IN		
60	70	80	85	90	100
0.85	1.02	1.20	1.28	1.37	1.55
0.76	0.43	1.10	1.18	1.27	2.44
0.66	0.83	1.00	0.85	1.17	1.34
0.57	0.74	0.91	0.99	1.07	1.24
0.49	0.65	0.82	0.90	0.98	1.15
0.40	0.56	0.73	0.81	0.89	1.05
	0.85 0.76 0.66 0.57 0.49	0.85 1.02 0.76 0.43 0.66 0.83 0.57 0.74 0.49 0.65	60 70 80 0.85 1.02 1.20 0.76 0.43 1.10 0.66 0.83 1.00 0.57 0.74 0.91 0.49 0.65 0.82	0.85 1.02 1.20 1.28 0.76 0.43 1.10 1.18 0.66 0.83 1.00 0.85 0.57 0.74 0.91 0.99 0.49 0.65 0.82 0.90	60 70 80 85 90 0.85 1.02 1.20 1.28 1.37 0.76 0.43 1.10 1.18 1.27 0.66 0.83 1.00 0.85 1.17 0.57 0.74 0.91 0.99 1.07 0.49 0.65 0.82 0.90 0.98

Tabella 9

		Acqua IN	
Aria IN	40	45	50
5°C	1.15	1.40	1.52
10°C	0.97	1.19	1.32
15°C	0.78	1.00	1.13
20°C	0.60	0.81	0.95
25°C	0.43	0.62	0.77
30°C	0.26	0.44	0.50

VENTILATORI E MOTORI

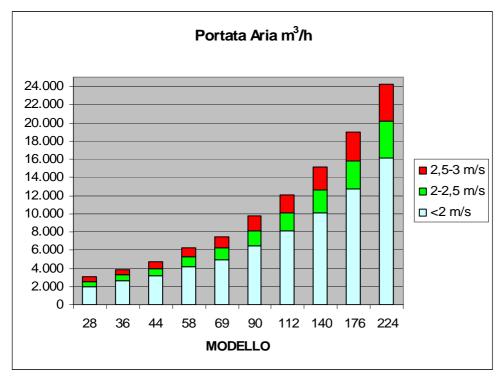
I ventilatori usati sono del tipo centrifugo a doppia aspirazione a pala in avanti, possono essere singoli (S) oppure binati(B).

Sono stati selezionati nella soluzione standard per dare una pressione statica complessiva di 250 Pa fino alla grandezza 58 e di 300 Pa fino alla grandezza 224.

Considerando che le perdite di carico interne possono variare in funzione del numero, tipo e ranghi delle batterie da 80 a 150 Pa circa, restano disponibili per canali e plenum da 100 a 150 Pa.

Tutte le trasmissioni sono fatte con puleggia sul motore a gole variabili in modo da poter variare, entro i limiti consentiti dal motore installato, i valori di pressione e portata.

Caratteristiche:

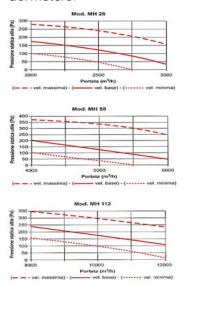

- I motori sono standardizzati con grado di protezione IP55 e classe di isolamento F. alimentazione 240/400 V trifase. In caso di necessità si può installare un motore sino a due taglie più grandi.
- Trasmissioni: con pulegge tipo TAPER LOCK fisse sul ventilatore a passo variabile sul motore gole tipo Z o tipo A a seconda della grandezza dell'unità.
- Il complesso motore-ventilatore è montato con supporti in gomma che permettono di variare l'orientamento della bocca di mandata.

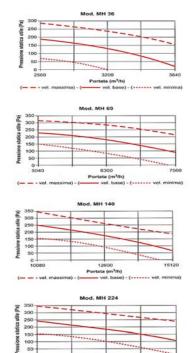
Descrizione		28	36	44	58	69	90	112	140	176	224
Portata nominale a 2.5 m/s	m³/h	2500	3200	4000	5000	6300	8000	10000	12600	16000	20000
Superficie frontale	m²	0.28	0.36	0.44	0.58	0.69	0.9	1.12	1.4	1.76	2.24
Tipo di ventilatore		THF 225	THF 250	THF 250	THF 280	THF 250	THF 250	THF 450	THF 450	THF 400	THF 450
Singolo/Binato		S	S	S	S	В	В	S	S	В	В
Potenza sonora ventilatore Lw	dB	77	78	82	84	82	85	86	88	86	89
Valocità di rotazione di base	g/1'	1180	1050	1100	1000	1150	1200	650	660	710	650
Potenza assorbita alle condizioni nom.	kW	0.35	0.45	0.7	0.82	1.1	1.5	1.8	2.3	2.6	3.3
Potenza motore installato	kW	0.55	0.75	1.1	1.1	1.5	2.2	2.2	3	4	4
Velocità di rotazione del motore	g/1'	1400	1400	1410	1410	1420	1420	1420	1420	1420	1420
Poli		4	4	4	4	4	4	4	4	4	4
Volt/Fasi/Frequenza	V-n°-Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
Corrente nominale IN a 400V	Α	1.65	2.1	3.3	3.3	3.9	5.4	5.4	7.1	9.2	9.2
Puleggia motore a passo variabile		PVU 92	PVU 92	PVU 92	PVU 92	PVU 120	PVU 120	PVU 120	PVD 120	PVD 120	PVD 120
Puleggia motore fissa		SPZ 85	SPZ 95	SPZ 95	SPZ 95	SPA 118	SPA 118	SPA 212	2 SPA 200	2 SPA 190	2 SPA 212
Velocità massima/minima	g/1'	905/1450	810/1296	810/1296	810/1296	966/1347	966/1347	550/750	580/795	610/835	550/750

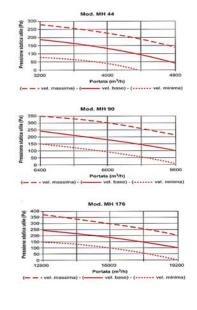
TABELLA PORTATE

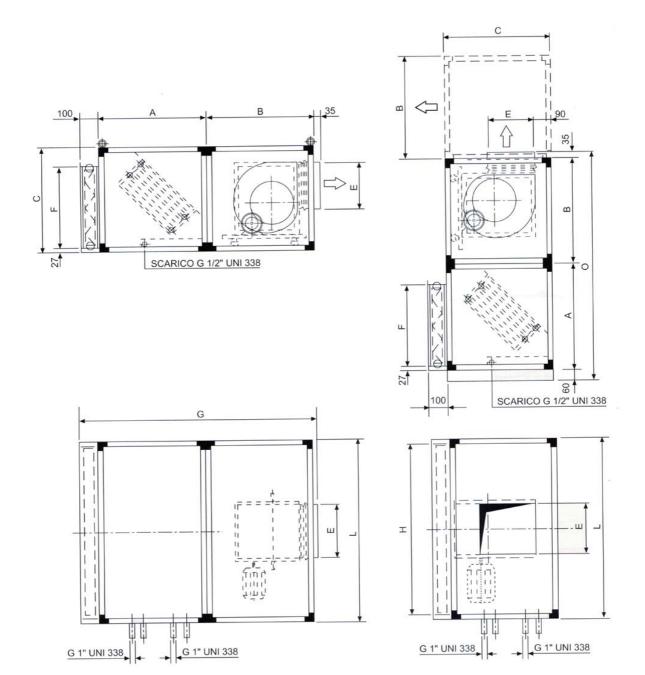
Riferendosi alla velocità frontale sulla batteria, il campo di normale funzionamento va da 2 a 3 m/s in ricaldamento e da 2 a 2.5 m/s in raffrescamento.

La serie MH copre il campo di portate da 2000 a 24000 m³/h con 10 taglie.

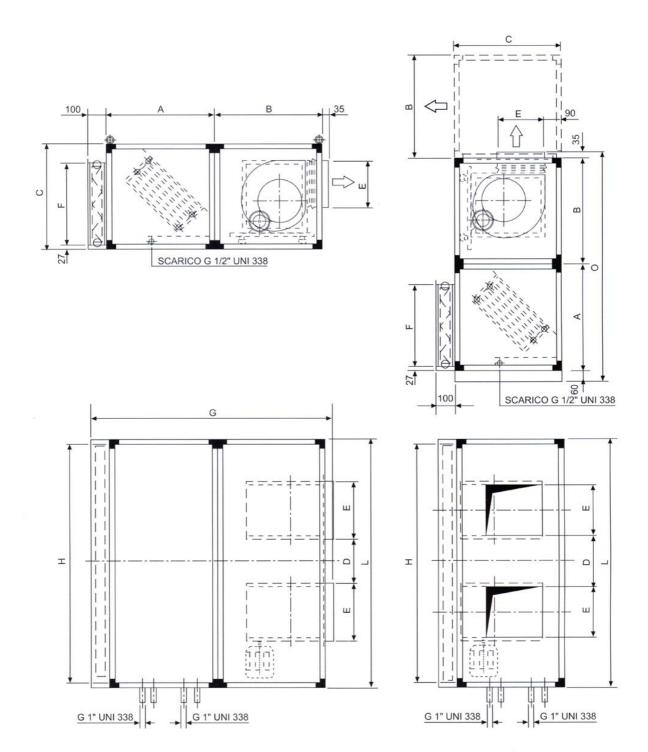

Nota: velocità frontali superiori a 2.5 m/s solo in riscaldamento

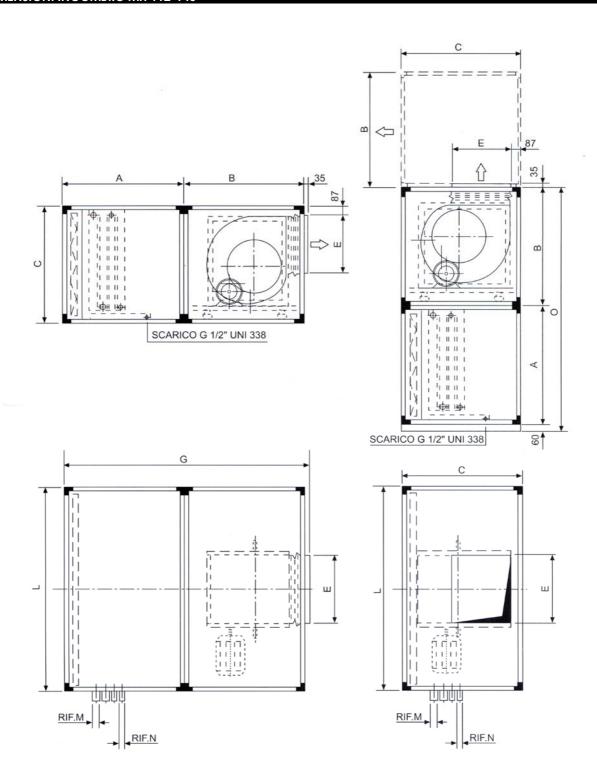

RESA DEI VENTILATORI


I grafici seguenti permettono di individuare, nella configurazione con filtro e batteria a sei ranghi, la pressione statica utile (cioè al netto delle perdite di carico interne alle unità di condizionamento). Le tre curve si riferiscono al funzionamento del ventilatore alle velocità massima, di tabella e minima.

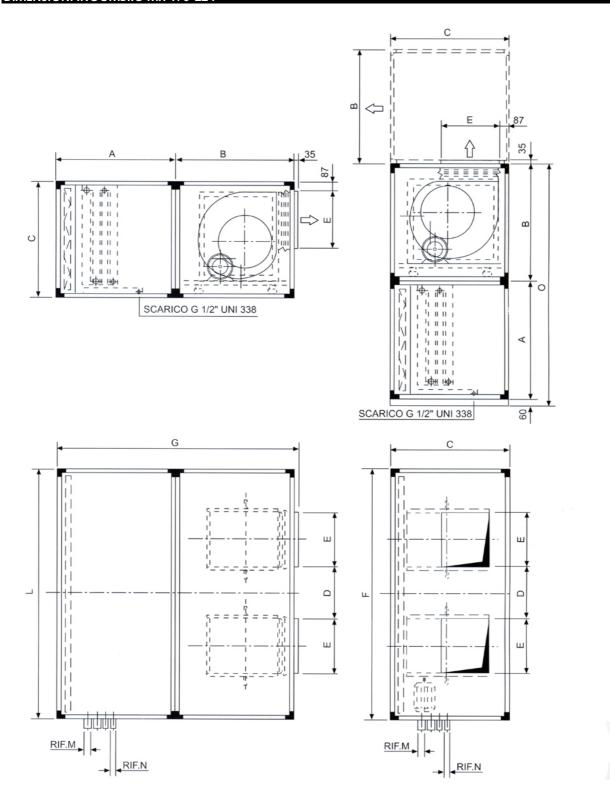

Le velocità massima e minima si riferiscono a pulegge del motore a diametro variabile completamente chiusa (massima velocità) e completamente aperta (minima velocità).

Prestazioni maggiori possono essere raggiunte con diverse pulegge ed eventualmente con la maggiorazione del motore.




	Portata aria	Tipo	Potenza	Quantità	Se	ezione batterie	9
Descrizione	media m³/h	ventilatore	motore	filtri H x L	dim. H x L	n° tubi	n° cir. 4R/2R
MH 28	2500	THF 225	0.55 kW	01 - 400x625	400x700	16	16/8
MH 36	3200	THF 250	0.75 kW	02 - 400x500	400x900	16	16/8
MH 44	4000	THF 250	1.1 kW	02 - 400x625	400x1000	16	16/8
MH 58	5000	THF 280	1.1 kW	02 – 500x400 01 – 500x500	500x1150	20	20/20

Descrizione	Dimensioni MH tipo verticale e orizzontale con un ventilatore										
Descrizione	Α	В	С	E	F	G	Н	L	0		
MH 28	580	580	580	288	448	1295	916	970	1255		
MH 36	580	580	580	322	448	1295	1116	1170	1255		
MH 44	580	580	580	322	448	1295	1316	1370	1255		
MH 58	660	660	660	361	548	1455	1416	1420	1415		


Descrizione	Portata aria	Tipo	Potenza	Quantità	S	ezione batter	ie
Descrizione	media m³/h	ventilatore	motore	filtri H x L	dim. H x L	n° tubi	n° cir. 4R/2R
MH 69	6300	THF 250 B	1.5 kW	03 – 500 x 500	500 x 1400	20	20/10
MH 90	8000	THF 250 B	2.2 kW	04 – 500 x 1000	500 x 1000	20	20/10

Descrizione	Dimensioni MH tipo verticale e orizzontale con un ventilatore											
Descrizione	Α	В	С	D	E	F	G	Н	L	0		
MH 69	660	660	660	250	322	548	1455	1666	1720	1415		
MH 90	660	660	660	250	322	548	1455	2066	2120	1415		

Descrizione	Portata aria	Tipo	Potenza	Quantità	S	ezione batteı	rie
Descrizione	media m³/h	ventilatore	motore	filtri H x L	dim. H x L	n° tubi	n° cir. 4R/2R
MH 112	10000	THF 450 B	2.2 kW	04 – 400 x 500 02 – 400 x 625	800 x 1400	32	64/32
MH 140	12600	THF 450 B	3.0 kW	08 – 400 x 500	800 x 1750	32	64/32

Descrizione	Dimensioni MH tipo verticale e orizzontale con un ventilatore										
Descrizione	Α	В	С	E	G	L	M	N	0		
MH 112	980	980	980	569	1995	1720	G1-½"	G1-½"	2055		
MH 140	980	980	980	569	1995	2020	G2"	G1-½"	2055		

Descrizione	Portata aria	Tipo	Potenza	Quantità	S	Sezione batterie			
Descrizione	media m³/h	ventilatore	motore	filtri H x L	dim. H x L	n° tubi	n° cir. 4R/2R		
MH 176	16000	THF 450 B	2.2 kW	08 – 400 x 500 02 – 400 x 400	800 x2200	32	64/32		
MH 224	20000	THF 450 B	3.0 kW	08 – 400 x 625 2-40	0x500 800 x 2800	32	64/32		

Descrizione	Dimensioni MH tipo verticale e orizzontale con un ventilatore										
Descrizione	Α	В	С	D	E	G	L	M	N	0	
MH 176	980	980	980	400	507	1995	2470	G2"	G1-½"	2055	
MH 224	980	980	980	450	564	1995	3070	G2"	G1-½"	2055	

By BI.DIEFFE Via L. Milani, 6
Via Isola della Scala, 34/A - 37068 Vigasio (VR)
Tel. 045 6685453 Fax. 045 6698581
www.thermac.it info@thermac.it